Pergamon

0040-4039(94)01715-8

Oxidation of L-Proline Methyl Ester Derivatives with the lodosylbenzene/Trimethylsilylazide Reagent Combination

Philip Magnus* and Christopher Hulme

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712.

Abstract: Oxidation of a series of L-Proline derivatives with the (PhIO)_{II}/TMSN3 reagent combination is reported. Subsequent utilization of the 5-azido N-acyl functionality as a N-acyl iminium ion precursor is described.

Recently we have reported the oxidation of amides, carbamates and ureas using $(PhIO)_n/TMSN_3$ or o-iodosybenzoic acid/TMSN₃ in dichloromethane to give α -azidoamides, Eqn 1.¹ This unexplored functionality was shown to act as an N-acyliminium ion precusor.²

To further illustrate the use of this new methodology, the oxidation of suitably N-protected Lproline methyl esters was explored. In recent years many proline analogs have been synthesized to study a variety of problems in peptide chemistry and drug design.³ The following letter reports an alternative to Shono's electrochemical oxidative procedure for amides.4 Table 1 lists the results of a study of urethane derivatives of L-proline methyl ester. At 25 °C all four substrates were seen to exist as two major conformers by ¹H NMR.⁵ In a typical reaction, TMSN₃ (4.8 eq.) was added to a suspension of (PhIO)n (2.4 eq.) in CH₂Cl₂ at -40 °C. The proline derivatives 1 were added to the suspension which was stirred under argon for 15 hours. Raising the temperature above -20 °C leads to rapid evolution of dinitrogen, and decompostion of the suspected azidonation reagent.⁶ The proline substrates were found to be considerably less reactive than the corresponding pyrrolidine derivatives. The rate and yield of a-azidonation increases with respect to the electron donating ability of R.¹ The Boc derivative proved to be the most reactive substrate with 70% conversion into 2 using 2.4 eq. and 4.8 eq. of (PhIO)n and TMSN3 respectively. Trapping of the suspected Nacyliminium ion intermediate by chloride (CH2Cl2 has been reported to be a good source of chloride nucleophile)⁷ and water (produced in the reaction)⁶ gave 3 and 4, Scheme 1. Over oxidation to the imide 5 was also observed. In related studies Moriarty et al. has shown that oxidation of pyrrolidine to lactams is possible with (PhIO)n in water.⁸ The structures of the imides 3 were confirmed by RuO₂/NalO₄ oxidations of substrates 1.9

TABLE 1. Oxidation of 1 using (PhIO)_n/TMSN₃

ENTRY	R	2.4 and 4.8 eq.	5 and 10 eq.	10 and 20 eq.	OVERALL
1	Bu [‡]	70% 2	65% 2	57% 2, 5% 3, 12% 4, 22% 5,	74%
2	Ph	27% 2	<u></u>	56% 2, 8% 3, 6% 4, 10% 5, 12% 1.	74%
3	Me	24% 2		56% 2, 4% 3, 14% 4, 19% 5, 3% 1.	74%
4	PhCH	2 30% 2	50% 2	55% 2, 11% 3, 6% 4, 6% 5, 4% 1.	7 2%

The Boc thiaproline substrate 6 was also investigated. Quantitiative conversion ([†]H NMR) to the 5-azido product 7 was observed. This high conversion is presumably due to the extra stability of the suspected N-acyl iminium ion conferred by the adjacent sulfur atom, **Scheme 2**. The α -azidoamide 7 was readily hydrolyzed to the N-formyldisulfide 8.

Oxidation of amide derivatives **9** showed lower overall conversion to 5-substituted proline derivatives **10**, an indication that the N-acyl iminium ion is greater stabilized by the urethane derivative and therefore more readily formed. The lack of any 5-chloro products further emphasizes this point. As with the urethanes imide formation **11** was also observed. Unlike the urethanes the 5-azido product **10** derived from the amide substrates shows slow decomposition to the aldehyde, **Scheme 3**. The α -azido derivatives **2** and **10** are isolated as a mixture of *cis*- and *trans*-isomers (1:2-5, *cis*- is more polar).

ENTRY (R)	2.4 and 4.8 eq.	10 and 20 eq.	OVERALL
Ph	9% 10	52% 10, 15% 11, 20% 9	52%
3,4,5- OMe Ph	31% 10	57% 10, 8% 11, 20% 9	57%
Me	24% 10	62% 10, 12% 11, 5% 9	62%

TABLE 2. Oxidation of 9 using (PhIO)_n/TMSN₃

High conversions of ureas to 5-azido products was expected based on results seen in the pyrrolidine series.¹ Surprisingly, on treatment of the N,N-diphenylcarbamoyl <u>L</u>-proline methyl ester 13 with the reagent combination relatively low conversions to 14, 15, 16 and 17 were observed by ¹H NMR.

Interestingly the ¹H NMR of 13 showed it to exist as one conformer in solution, presumably due to a large steric interaction between the -NPh₂ and the -CO₂Me functionality. A 1:1 ratio of 2and 5-azido products (14 and 15) was observed. The compound 15 was seen to occur as a 3:1 ratio of *trans:cis* diastereomers. The structures of the *cis*-15 and the 2-azido 14 were shown by X-ray, **Scheme 4**.

Use of the 2- and 5-azido substituted proline urea derivatives **14** and **15** as N-acyliminium ion precursors was shown by intramolecular trapping upon ionisation by $TiCl_4$ (3 eq.) to give **18** (42%) and **19** (92%, 15:1, *trans:cis*) respectively.¹⁰

Treatment of 2 with methanol in the presence of SiO₂ gave the α -methoxyamide 20 as a 1:1 mixture of epimers. The overall conversion is equivalent to that seen in the electrochemical

oxidation of similar substrates by Shono, Scheme 5.⁴ Finally, the azetidine 21 was converted into the α -azido adduct 22 (35%), and as expected is less reactive than the pyrrolidine substrates.

Acknowledgments. The National Institutes of Health (GM 32718), National Science Foundation and the Welch Foundation are thanked for their support of this research. Dr. Vince Lynch is thanked for the X-ray determinations.

References and Footnotes.

Magnus, P.; Hulme, C.; Weber, W. J. Am. Chem. Soc. 1994, 116, 4501. Magnus, P.; Lacour, J.; Weber, W. J. Am. Chem. Soc. 1993, 115, 9347. For previous synthetic uses of the PhIO/TMSN₃ reagent with TIPS silyl enol ethers: see:-Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 767. Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 3993. Magnus, P.; Evans, A. P.; Lacour, J. Tetrahedron Letters. 1992, 34, 2933. For the preparation of (PhIO)_n see Saltzman, H.; Sharefkin, J. G. Org. Syntheses, Coll. Vol. 3, 485. Clauss, K.; Grimm, D.; Prossel, G. Liebigs Ann. Chem., 1974, 539-560.

2. For a review see:-Hiemstra, H.; Speckamp, W. N. Additions to N-acyl iminium ions in Comprehensive Organic Chemistry; Vo1. 2. Trost, B. M. Ed; Pergamon Press: Oxford, **1991**, 1047-1082. For a recent report of the conversion of α -methoxyamides into α -azidoamides see:-Matsumura, Y.; Tomita, T. *Tetrahedron Letters*, **1994**, *35*, 3737.

3. Baldwin, J. E.; Hulme, C.; Parkes, K. E. B.; Edwards, A. J.; Schofield, C. J. *Tetrahedron Lett.*, 1993, *34*, 1665-1668. Baldwin, J. E.; Hulme, C.; Edwards, A. J.; Schofield, C. J. *J. Chem. Soc., Chem. Commun.*, 1993, 935-936. Andres, C. J.; Macdonald, T. L.; Ocain, T. D.; Longhi, D. *J. Org. Chem.*, 1993, *58*, 6609-6613. Robl, J. A. *Tetrahedron Lett.*, 1994, *35*, 393-396.

4. Shono, T. *Tetrahedron*, **1984**, *40*, 811. Shono, T.; Matsumaru, Y.; Tsubata, K. *Org Synth.*, **1985**, *63*, 206. Asada, S.; Kato, M.; Asai, K.; Ineyama, T.; Nishi, S.; Izawa, K.; Shono, T. *J. Chem. Soc., Chem. Commun.*, **1989**, 486-488. Shono, T.; Matsumaru, Y.; Tsubata, K.;Uchida, K. *J. Org. Chem.*, **1986**, *51*, 2590-2592. Wong, P. L.; Moeller, K. D. *J. Am. Chem. Soc.*, **1993**, *115*, 11434-11445.

5. Hruby, V. J.; Brewster, A. I.; Glasel, J. A. Proc. Natl. Acad. Sci. U.S., 1971, 68, 450.

6. If this solution is warmed to 0 °C it cleanly decomposes to iodobenzene, dinitrogen and hexamethyldisiloxane. Zefirov, N. S.; Safronov, S. O.; Kaznacheev, A. A.; Zhdankin, V. V. *Zhur. Org. Khim.* **1989**, *25*, 1807 and **1990**, *25*, 1633.

7. Olah, G. A.; Wu, A.; Farooq, O. J. Org. Chem., 1989, 54, 1463 and references therein.

8. Moriarty, R. M.; Vaid, R. K.; Duncan, M. P.; Ochiai, M.; Inenaga, M.; Nagao, Y. *Tetrahedron Lett.*, **1988**, 29, 6913-6916.

9. Yoshifuji, S.; Tanaka, K-I.; Nitta, Y. Chem. Pharm. Bull. 1985, 33, 5515.

10. Flynn, G. A.; Giroux, E. L.; Dage, R. C. *J. Am. Chem. Soc.*, **1987**, *109*, 7914. Koot, W-J.; Hiemstra, H.; Speckamp, W. N. *Tetrahedron Lett.*, **1992**, *33*, 7969.

(Received in USA 13 July 1994; revised 30 August 1994; accepted 1 September 1994)

8100